Does learning mode affect student grades in an elementary statistics course?

Lilly Austin Conference Jan 10, 2020

Dr. John Griffith Dr. Bobby McMasters Dr. Emily Faulconer

Dramatic shift from on-ground to online registrations.

100

More students working full time

- 20 million students
- 25% full time college/work
- 40% Work <30 hrs a week

Online vs. On ground

On Ground Online

EMBRY-RIDDLE Aeronautical University.

(Bureau of labor Statistics 2019; Deruy, 2015)

How do you make a class great?

Online

Classroom

EMBRY-RIDDLE Aeronautical University.

What the literature says

- Meta Analysis
 - Johan et al, 2007
 - Lundenberg et al., 2008

7

Meta Analysis

• Sizemant et al, 2006; Williams et al, 2006; Means et al 2009

Online courses

Students more likely to:

(Johnson and Meija, 2014)

Persistence

Jaggars et al., 2013, Murphy and Steward, 2013).

Best practices

Discussions

- 1/3 ratio to initial posts
- Initial post first
- Ask questions
- High activity

Grading

- Within 7 days of due date
- Give feedback
 - What was good
 - What needs improvement
- Check points

Details about STAT 211

"Real" Simulation Problems

Airshow Day 1: Mean and Standard Deviation	Modu 2
Discussion	

Introduction

This discussion provides a simulated exercise using two of the most popular descriptive statistics, mean and standard deviation. You are strongly encouraged to complete the textbook reading and start the MyStatLab Homework assignment before beginning this discussion. You need to be familiar with mean and standard deviation, their interpretation and why they are typically calculated and reported together.

Χ

⋟

In this discussion, you are required to calculate and interpret reported mean and standard deviation values. In the Module <u>2 - Assignment: Airshow Day 1: Winner</u>, you will be required to concisely report results obtained in this discussion.

Scenario

Congratulations on your promotion! You are now leading the team. After one week in your new position, your supervisor provides guidance for your new assignment, responsibility for an important and "very visible" task.

In one month, your airport is hosting an airshow that allows potential future customers to observe the flying capabilities of civilian and military aircraft. Support teams are planning for over 100,000 to attend the two-day event. Your tasks are to determine and officially report the "Winner;" a very prestigious honor; highly valued in both civilian and military communities.

Fortunately, your predecessor (an Embry-Riddle graduate) has provided a Microsoft Excel template:

AIRSHOW -- US MILITARY AIRCRAFT PERFORMANCE

	Tan	kers	Transport	Bomber		Fighters		Sortie	Sortie	
Flight Name	KC-135	KC-10	<u>C-17</u>	B-52	F-15	F-16	F-22	F-35	Mean	Standard Deviation
Sortie 1										
Sortie 2										
Sortie 3										

Real "Reporting" Assignments

Airshow Day 2: Airshow Champion

Assignment

Scenario

During Day 2 of the airshow, you are required to select and report an Airshow Champion. Use the spreadsheet that you created for the <u>Module 3 - Discussion: Airshow Day 2: Probability</u> discussion to:

 Determine the aircraft winner.
Report the probability of another aircraft scoring higher than the winner.

Report values of probability to four decimal places, i.e., p = 0.1234.

3

+

Now that you have the simulated data, report the Airshow Champion. Report the champion in a Memorandum of Understanding (MOU), Your MOU should be a maximum of one page with one-inch margins using 11 point font and consist of only the following three paragraphs:

- 1. Introduction Prepare the audience for what he/she is about to read.
- 2. Results The facts.
- 3. Conclusion(s) Results based, concise and to the point; actionable

Review the Writing Suggestions page for tips. Use this format for your document:

MEMORANDUM OF UNDERSTANDING

- 97th AMW USAF
- FROM: Your Name

TO:

- DATE: Add Assignment Due Date
- SUBJECT: Determined by Student

Learning Modalities EagleVision Example

Modalities

• Online

- Traditional Classroom
- EagleVision Home
- EagleVision Classroom
- Above "Blended" with Canvas Assignments

EMBRY-RIDDLE Aeronautical University.

Non-traditional university

Students

- Non-traditional
- Working adults
- 50% military
- 80% affiliated with military
- Avg. age: 34

Campus

- 90% online
- Also offer on ground and synchronous video
- 9 week terms
- 5 major terms a year
- •>23K Pt

It is hard to compare online vs on ground instruction.

• Terms

Assignments

STAT 211 Statistics with Aviation Applications Online Course Syllabus

Credit Hours: 3

Delivery Method: Online (Internet/Canvas)

Required Course Materials

Triola, M. (2018). *Elementary statistics using excel and MyStatLab access card* (6th ed.). Boston, MA: Pearson.

ISBN 978-0134763781. This ISBN includes a hardcover copy of the textbook **and** the MyStatLab access card. MyStatLab and the e-textbook are available for purchase (excluding physical textbook) in your Canvas course; click on "MyLab and Mastering" to explore.

Note: MyStatLab student access is a course requirement

Caution: If the MyStatLab fourteen (14) day trial period is selected, do not let the trial time expire before purchasing access.

Triola, M. (2018). Elementary statistics using excel and MyStatLab access card (6th ed.). Boston, MA: Pearson.

0		
	EvaluationKIT	
Account	Dashboard	
8	EvaluationKIT Administrator	
Admin	En al el Viation	
63	Eaglevision	
ashboard	Tutoring	
2	Pages	Ø
Courses	Collaborations	Ø
alendar	Assignments	Ø
a.	Quizzes	Ø
Inbox	Files	Ø
泉	Conferences	Ø
Studio	Outcomes	Ø
?	Hunt Library	
Help	Bookstore	
	Settings	

Statistics course

- 1st stats course taken
- >2,000 enrollments per year
- Augmented by Pearson
- Use Triola Textbook
- All instructors
 - Same book
 - Same syllabus
 - Same graded items

Method

Statistics

- ANOVA for final course grades
- Chi Sq for all other
- Dependent variables
 - Grades
 - Grade distribution
 - Pass rates
- Independent
 - Mode of learning

Hypotheses

- Ha₁. Student end of course scores in classroom, on-line and video synchronous learning modes are not all statistically equivalent
- Ha₂. End of course grade distributions in classroom, on-line, and video synchronous learning modes of delivery are not statistically independent.
- Ha3 Student pass rates in classroom, on-line and video synchronous learning modes are not statistically independent.

Treatment of the data

- End of course grades
 - One way ANOVA
- Course grade distribution
 - Chi Square test of independence
- Pass comparison
 - Chi Square test of independence
- All tests $\alpha = .05$

End of course grades

Source	DF	SS	MS	F-Statistic	P-value
Mode	3	1650.05	550.02	1.41	.239
Error	303	117954.89	389.29		
Total	307	119604.94	-		

Levene's Test for Homogeneity of Variance

Test	DF 1	DF 2	P-value
Statistic			
2.32	3	303	.075

Course grade distribution

	Classroom	Videosynchronous Classroom	Videosynchronous Home	Online	Total
А	14	7	19	126	166
В	4	4	11	63	82
С	3	0	7	19	29
D	1	1	1	6	9
F	0	0	5	16	21
Total	22	12	43	230	307

Chi Square Test:

Statistic	DF	Value	P-value
Chi Square	12	11.37	.497

Pass rates

	Classro om	Videosynchro nous Classroo m	Videosynchro nous Home	Online	Total
Pass	22	12	38	214	286
Fail	0	0	5	16	21
Total	22	12	43	230	307

Chi Square Test:

Statistic	DF	Value	P-value
Chi Square	3	4.05	.26

EMBRY-RIDDLE Aeronautical University...

Results

• Statistics (n=307) No significant difference

- Final course grades (p=.239)
- Grade Distribution (p=.497)
- Pass (p=.26) _☉∠

<u>_</u>⊙_∕ _⊙_∕

EMBRY-RIDDLE Aeronautical University.

One trick pony?

- Similar results in
 - Chemistry
 - Physics

Method

- Chemistry and Physics
 - Chi Square or Fishers exact test α = .05
 - Bonferroni test used in post hoc α =.00833
- Dependent variables
 - Grades
 - Grade distribution
 - Withdraw rates
- Independent
 - Mode of learning

Results

- Chemistry (n=823)
 - Grade Distribution Online earning more As
 - Withdraw rate _⊙_∕
- Physics (n= 1964) no significance in
 - Grade Distribution \①_/
 - Withdraw rate _☉_⁄
 - Pass (online higher than EV classroom)

Takeaways

- Overall no significant differences in courses analyzed
- Students selected courses based on convenience and monitory reasons
- 80% military affiliated
- Canvas LMS
- At least 25% faculty terminally degreed
- Instructor presence key to effective online courses

Questions?

John Griffith, Ph.D. griff2ec@erau.edu

Dr. Bobby McMasters mcmas245@erau.edu

Dr. Emily Faulconer faulcone@erau.edu

References

- Atchley, T. W., Wingenbach, G., & Akers, C. (2013). Comparison of course completion and student performance through online and traditional courses. The International Review of Research in Open and Distributed Learning, 14(4) doi:10.19173/irrodl.v14i4.1461
- Dotterweich, D. P., & Rochelle, C. F. (2012). Online, instructional television, and traditional delivery: Student characteristics and success factors in business statistics. American Journal of Business Education, 5(2), 129-138.
- Flanagan, J. (2012). Online versus face-to-face instruction: Analysis of gender and course format in undergraduate business statistics courses. Academy of Business Research, 11, 93-101.
- Faulconer, E. K., Griffith, J. C., Wood, B., Acharyya, S., and Roberts, D. L. (2018). A comparison of online, video synchronous, and traditional learning modes for an introductory undergraduate physics course. (Journal of Science Education and Technology 27(5), 404-411. Retrieved from https://doi.org/10.1007/s10956-018-9732-6
- Faulconer, E. K., Griffith, J. C., Wood, B. L., Acharyya, S., and Roberts, D. L. (2017). A comparison of online and traditional chemistry lecture and lab. Journal of Chemistry Education Research and Practice. DOI: 10.1039/C7RP00173H
- Gay, L. R., Mills, G. E., & Airasian, P. W. (2009). Educational research: Competencies for analysis and application (9th ed.). Upper Saddle, NJ: Pearson.
- Gould, R & Ryan, C 2013, Introductory statistics: Exploring the world through data. Upper Saddle River, New Jersey: Pearson Education Inc.
- Griffith, J. C., Roberts, D. L., & Schultz, M. C. (2014). Relationship between grades and modes of learning. The Journal of American Business Review, Cambridge, 3(1), 81-88.

References Cont.

- Jaggars, S. S. (2014). Choosing between online and face-to-face courses: Community college student voices. American Journal of Distance Education, 28(1) doi:http://dx.doi.org/10.1080/08923647.2014.867697
- Jaggars, S. S., Edgecombe, N., & Stacey, G. W. (2013). What we know about online course outcomes. (). Columbia University: Community College Research Center. Retrieved from https://eric.ed.gov/?id=ED542143
- Jahng, N., Krug, D., & Zhang, Z. (2007). Student achievement in online distance education compared to face-to-face education. European Journal of Open, Distance, and E-Learning, 10(1) Retrieved from http://www.eurodl.org/materials/contrib/2007/Jahng_Krug_Zhang.htm
- Johnson, H. P., & Mejia, M. C. (2014). Online learning and student outcomes in california's community colleges. (). Public Policy Institute of California. Retrieved from http://www.ppic.org/content/pubs/report/R_514HJR.pdf
- Lawrence, J. A., & Singhania, R. P. (2004). A study of teaching and testing strategies for a required statistics course for undergraduate business students. Journal of Education for Business, 79(6), 333-338. doi:10.3200/JOEB.79.6.333-338
- Lou, Y., Bernard, R. M., & Abrami, P. C. (2006). Media and pedagogy in undergraduate distance education: A theory-based meta-analysis of empirical literature. Educational Technology Research and Development, 54(2), 141-176. doi:doi:10.1007/s11423-006-8252-x
- Lundberg, J., Castillo-Merino, D., & Dahmani, M. (2008). In Castillo-Merino D., &Sjoberg M.(Eds.), Do online students perform better than face-to-face students? reflections and a short review of some empirical findings (1st ed.) Editorial UOC. Retrieved from http://www.uoc.edu/rusc/5/1/dt/eng/lundberg_castillo_dahmani.pdf
- McLaren, C. H. (2004). A comparison of student persistence and performance in online and classroom business statistics experiences. Decision Sciences Journal of Innovation, 2(1), 1-10. doi:10.1111/j.0011-7315.2004.00015.x

EMBRY-RIDDLE Aeronautical University.

References Cont.

- Nguyen, T. (2015). The effectiveness of online learning: Beyond no significant difference and future horizons. Journal of Online Learning and Teaching, 11(2), 309-319. Retrieved from http://jolt.merlot.org/Vol11no2/Nguyen_0615.pdf
- Online Learning Consortium. (2016). Babson study: Distance education enrollment growth continues. Retrieved from https://onlinelearningconsortium.org/news_item/babson-study-distance-education-enrollment-growth-continues-2/
- Roberts, D., Griffith, J., Faulconer, E., Wood, B., & Acharyya, S. (2019). An investigation of the relationship between grades and learning modes in an introductory research methods course. Online Journal of Distance Learning Administration, 22(1), 1-13. Retrieved from https://www.westga.edu/~distance/ojdla/spring221/roberts_griffith_faulconer_wood_acharyya221.html
- Rochelle, C. F., & Dotterweich, D. (2007). Student success in business statistics. Journal of Economics, 6(1), 19-24.
- Scherrer, C. R. (2011). Comparison of an introductory level undergraduate statistics course taught with traditional, hybrid, and online delivery methods. INFORMS Transactions on Education, 11(3), 106-110. doi:10.1287/ited.1110.0063
- Sitzmann, T., Kraiger, K., Steward, D., & Wisher, R. (2006). The comparative effectiveness of web-based and classroom instruction: A metaanalysis. Personnel Psychology, 59(3), 623-664. doi:10.1111/j.1744-6570.2006.00049.x
- Summers, J. J., Waigandt, A., & Whittaker, T. A. (2005). A comparison of student achievement and satisfaction in an online versus traditional face-to-face statistics class. Innovative Higher Education, 29(3), 233-250.
- Triola, M. F. (2018). Elementary statistics: Using excel. (6th ed.). Boston: Pearson
- U.S. News and World Report. (2019). Embry-riddle aeronautical university. Retrieved from https://www.usnews.com/bestcolleges/embryriddle-aeronautical-university-1479

References Cont.

- Williams, S. L. (2006). The effectiveness of distance education in allied health science programs: A meta-analysis of outcomes. American Journal of Distance Education, 20(3), 127-141. doi:10.1207/s15389286ajde2003_2
- Xu, D., & Jaggars, S. S. (2013). The impact of online learning on students' course outcomes: Evidence from a large community and technical college system. Economics of Education Review, 37, 46-57. doi:10.1016/j.econedurev.2013.08.001
- Zimmerman, W. A., & Austin, S. R. (2018). Using attitudes and anxieties to predict end-of-course outcomes in online and face-toface introductory statistics course. Statistics Education Research Journal, 17(2)

